Asymptotic behavior of random determinants in the Laguerre, Gram and Jacobi ensembles

نویسنده

  • Alain Rouault
چکیده

We consider properties of determinants of some random symmetric matrices issued from multivariate statistics: Wishart/Laguerre ensemble (sample covariance matrices), Uniform Gram ensemble (sample correlation matrices) and Jacobi ensemble (MANOVA). If n is the size of the sample, r ≤ n the number of variates and Xn,r such a matrix, a generalization of the Bartlett-type theorems gives a decomposition of detXn,r into a product of r independent gamma or beta random variables. For n fixed, we study the evolution as r grows, and then take the limit of large r and n with r/n = t ≤ 1. We derive limit theorems for the sequence of processes with independent increments {n−1 log detXn,⌊nt⌋, t ∈ [0, T ]}n for T ≤ 1 : convergence in probability, invariance principle, large deviations. Since the logarithm of the determinant is a linear statistic of the empirical spectral distribution, we connect the results for marginals (fixed t) with those obtained by the spectral method. Actually, all the results hold true for log gases or β models, if we define the determinant as the product of charges. The classical matrix models (real, complex, and quaternionic) correspond to the particular values β = 1, 2, 4 of the Dyson parameter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random block matrices generalizing the classical ensembles

In this paper we consider random block matrices which generalize the classical Laguerre ensemble and the Jacobi ensemble. We show that the random eigenvalues of the matrices can be uniformly approximated by the roots of matrix orthogonal polynomials and obtain a rate for the maximum difference between the eigenvalues and the roots. This relation between the random block matrices and matrix orth...

متن کامل

Level Spacing Distributions and the Bessel Kernel

Scaling models of random N x N hermitian matrices and passing to the limit N -» oo leads to integral operators whose Fredholm determinants describe the statistics of the spacing of the eigenvalues of hermitian matrices of large order. For the Gaussian Unitary Ensemble, and for many others' as well, the kernel one obtains by scaling in the "bulk" of the spectrum is the "sine kernel" — — . Rescal...

متن کامل

Asymptotic form of the density profile for Gaussian and Laguerre random matrix ensembles with orthogonal and symplectic symmetry

In a recent study we have obtained correction terms to the large N asymptotic expansions of the eigenvalue density for the Gaussian unitary and Laguerre unitary ensembles of random N × N matrices, both in the bulk and at the soft edge of the spectrum. In the present study these results are used to similarly analyze the eigenvalue density for Gaussian and Laguerre random matrix ensembles with or...

متن کامل

Extended Jacobi and Laguerre Functions and their Applications

The aim of this paper is to introduce two new extensions of the Jacobi and Laguerre polynomials as the eigenfunctions of two non-classical Sturm-Liouville problems. We prove some important properties of these operators such as: These sets of functions are orthogonal with respect to a positive de nite inner product de ned over the compact intervals [-1, 1] and [0,1), respectively and also th...

متن کامل

Pathwise asymptotic behavior of random determinants in the uniform Gram and Wishart ensembles

This paper concentrates on asymptotic properties of determinants of some random symmetric matrices. If Bn,r is a n × r rectangular matrix and B′ n,r its transpose, we study det(B′ n,rBn,r) when n, r tends to infinity with r/n → c ∈ (0, 1). The r column vectors of Bn,r are chosen independently, with common distribution νn. The Wishart ensemble corresponds to νn = N (0, In), the standard normal d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007